LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.A. DEGREE EXAMINATION - ECONOMICS

FIFTH SEMESTER - APRIL 2010
EC 5404 - MATHEMATICS FOR ECONOMISTS

Date \& Time: 29/04/2010 / 9:00-12:00
Dept. No. \square Max. : 100 Marks

PART - A

Answer any FIVE questions in about 75 words each. ($5 \times 4=20$ marks)

1. Define differential coefficient.
2. Find $\frac{d z}{d x}, \frac{d z}{d y}, \frac{d^{2} z}{d x}, \frac{d^{2} z}{d y}$ and $\frac{d^{2} z}{d x d y}$

$$
Z=\log _{e}\left(x^{2}+2 x y-y^{2}\right)
$$

3. Find the rate of change of Y w.r.t. X, when $Y=(2 X-3)^{7 / 3}$
4. If demand function is $\mathrm{Q}_{\mathrm{d}}=100-5 \mathrm{p}$, find the price at which elasticity of demand is unitary.
5. What are the properties of a continuous function?
6. Define definite integral.
7. Find the value of $\operatorname{lt}_{x \rightarrow 0} \sqrt{25-x^{2}}$

PART - B

Answer any FOUR questions in about 250 words each. ($4 \times 10=40$ marks)
8. Show that $M R=A R\left(1-\frac{1}{\left|e_{d}\right|}\right)$
9. Explain the theorems on limit.
10. Derive elasticity of substitution form $Q=A\left[\alpha L^{-\beta}+(1-\alpha) K^{-\beta}\right]^{-\frac{1}{\beta}}$

Where $\quad \mathrm{Q}=$ output; $\mathrm{L}=$ labour; $\mathrm{K}=$ Capital.
11. If $q=e^{-2 p}$ calculate the price elasticity ' η ' when $\mathrm{p}=2$.
12. State "Eluer's Theorem".
13. Using Lagrangeian multiplier method, maximize $U=10 q_{1} \cdot q_{2}$ subject to $100-5 q_{1}+10 q_{2}=0$.
14. Show that slope of AR is half of the slope of MR where AR is a liner function of output.

PART - C

Answer any TWO questions in about 900 words each. $\quad(2 \times 20=40$ marks $)$

15. Discuss the properties of Cobb-douglas production function.
16. Solve $(x+y) d x+(x-y) d y=0$.
17. (i) Evaluate $\int x \sqrt{a^{2}-x^{2}} \cdot d x$
(ii) Find the producers surplus for the supply function $p=10-2 q$ when the equilibrium price for the product is Rs. 20.
18. If the demand function for x and y are $p=36-3 x$ and $q=40-5 y$ and the joint-cost function is TC $=x^{2}+2 x y+3 y^{2}$ determine the quantities and prices that maximize profit for the monopolist and find the maximum profit.
